Tuesday, February 21, 2017

Types of Grammar in automata


According to Noam Chomosky, there are four types of grammars − Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other −
Grammar TypeGrammar AcceptedLanguage AcceptedAutomaton
Type 0Unrestricted grammarRecursively enumerable languageTuring Machine
Type 1Context-sensitive grammarContext-sensitive languageLinear-bounded automaton
Type 2Context-free grammarContext-free languagePushdown automaton
Type 3Regular grammarRegular languageFinite state automaton
Take a look at the following illustration. It shows the scope of each type of grammar −
Containment of Type3, Type2, Type1, Type0

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.
The productions must be in the form X → a or X → aY
where X, Y ∈ N (Non terminal)
and a ∈ T (Terminal)
The rule S → ε is allowed if S does not appear on the right side of any rule.

Example

X → ε 
X → a | aY
Y → b 

Type - 2 Grammar

Type-2 grammars generate context-free languages.
The productions must be in the form A → γ
where A ∈ N (Non terminal)
and γ ∈ (T ∪ N)* (String of terminals and non-terminals).
These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

S → X a 
X → a 
X → aX 
X → abc 
X → ε

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form
α A β → α γ β
where A ∈ N (Non-terminal)
and α, β, γ ∈ (T ∪ N)* (Strings of terminals and non-terminals)
The strings α and β may be empty, but γ must be non-empty.
The rule S → ε is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

AB → AbBc 
A → bcA 
B → b 

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.
They generate the languages that are recognized by a Turing machine.
The productions can be in the form of α → β where α is a string of terminals and nonterminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.

Example

S → ACaB 
Bc → acB 
CB → DB 
aD → Db 

No comments:

Post a Comment